
An Efficient Spatial Domain Based Image
Watermarking Using Shell Based Pixel Selection

[1]Shubham Mathur, [2]Akshay Dhingra,[3]*Prabukumar M,
[4] Agilandeeswari L

School of Information Technology and Engineering
VIT University

Vellore, TN, India.
[1]shubham.mathur@engineer.com

[2]akshay300395@gmail.com
[3]mprabukumar@vit.ac.in

[4]agila.l@vit.ac.in
*Corresponding Author

Muralibabu K
Department of ECE

Lord Ayyappa Institute of Engineering and Technology
Kancheepuram, TN, India

mail2murali05@yahoo.co.in

Abstract— In this paper, we implemented a new algorithm in
spatial domain with shell based pixel selection for watermark
embedding and extraction. Here, the watermark is first converted
into binary image by local thresholding and then converted into a
logical matrix. Before embedding, each value of logical matrix is
XOR-ed using a random 8-bit key to generate modified logical
matrix. Next, the pixel of host image is selected by shell-based
technique along row and column alternatively, starting from
position (2, 2) and moving diagonally. To prevent duplicate
selection of pixel two direct-address tables are maintained. Each
pixel is sliced into red, green, blue and alpha components and bits
from modified logical matrix are embedded into LSB of each
component and finally an extraction key is generated. To detect
tampering in an image, watermark is extracted using key and
compared with original watermark. The proposed method is
evaluated with benchmark dataset and we obtained a favorable
result in terms of PSNR and BER. We reported the results of
various kinds of image manipulation to assess the performance of
the proposed method by drawing a comparative study of the
original watermark and the watermark extracted from a
manipulated image. Shell based pixel selection gives sensitivity and
converting watermark to logical matrix and storing it in each
component of pixel gives higher capacity than traditional methods.

Keywords—logical matrix; shell-based; PSNR; BER; direct-
address table; image manipulation.

I. INTRODUCTION
The spread, easy access and availability of internet, coupled

with modern applications, like WhatsApp, Photoshop editors,
Facebook, Google plus, snipping tools, and endless other
applications have made sharing and manipulation of images a
really easy task. With this given scenario, a method is needed that
helps the owner identify the detection of manipulation in his
copyrighted digital image. It is because once an image is
manipulated it is not authenticate anymore. To provide image

authentication, various forms of information hiding techniques
are available namely, steganography [1, 2] and digital
watermarking [3, 4, 5]. In this, steganography concentrates on
sharing secret messages, where as, digital watermarking is a
technique used to embed a digital data called watermark over the
host image to protect it from the act of misusing [6]. Fragile
watermarking is a form of digital watermarking helps in image
authentication, tamper detection and verification of image
integrity [7].

A fragile watermark is a watermark which is embedded in a
host image, gets destroyed easily even on slight modification of
watermarked image. This tampered watermark helps to identify
that image has been edited, damaged or altered after it was
marked [8]. The fragile watermarking techniques can be
classified into image [9], audio[10] and video [11] based on the
cover content used for watermarking. It is further classified
according to their working domain as Spatial and Frequency. In
spatial domain, the watermark data is embedded into pixel values
of host image [12, 13]. While in frequency domain the watermark
data is embedded in frequency components of the host image [14,
15].

The Chaos based spatial domain watermarking method
developed by R.Munir [16] provides good security, high
sensitivity but it has some key defects that algorithm has low
capacity, it arises because to detect pixel level tampering it
requires embedding in each pixel of host image, thus the size of
watermark should be less than of host image. Another issue is,
the generation of chaos map is time consuming as it is going to
involve lot of mathematical calculation and the iterative nature of
its truncate function to generate integer values are also time
consuming. Due to all these demerits, we devised a new
algorithm. It has three times more capacity than previous method
as each pixel of host image could store three pixels of watermark.
To match the sensitivity and security provided by chaos method,
shell based pixel selection is used which provide high

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

978-1-5090-2029-4/16/$31.00 @2016 IEEE 2696

randomness so the location and order of watermark pixels in host
image is unpredictable.

The various forms of manipulations tested in this research
include Gaussian blur, cropping, forgery, color inversion, jpeg
compression, uniform monochromatic noise, Gaussian
monochromatic noise, and sharpening. The metrics used to
evaluate these forms of manipulations include PSNR and BER.

The rest of the paper is organized as follows: Section II
discusses the proposed embedding and extraction algorithm,
Experimental Results are presented in Section III and the
conclusions are drawn in Section IV.

II. PROPOSED ALGORITHM
 The proposed image watermarking is based on bit plane
slicing, local thresholding, direct-address table, spatial domain
fragile watermarking using modified logical matrix and shell
based pixel selection for embedding and extraction. Before
embedding, the watermark image is converted to binary image
using local thresholding. In local thresholding, an intensity
values of the local neighborhood of each pixel is statistically
examined. The statistics that is used is the mean of the minimum
and maximum values.

 T = (1)

The binary image (BW) is converted into corresponding logical
matrix (LM1). A random 8-bit key is generated (K1). Modifier
use this key and works like an encrypter. It takes XOR
(Exclusively OR) with logical matrix values to generate
modified logical matrix (LM2).

For example:
Key=10110010

 (2)

Table I. Logical matrix of binary watermark LM1

1 0 1 0 0

0 0 0 1 1

0 0 1 0 0

1 0 1 0 1

0 1 1 1 0

Table II. Modified logical matrix of binary watermark LM2

0 0 0 1 0

0 1 0 0 1

1 1 1 0 1

1 1 1 1 0

0 1 0 1 1

 In watermark embedding the least significant bits (LSB) of
pixels is used for embedding where the LSB's of the host image
are replaced by the encrypted watermark. But instead of
traditional embedding pattern a different embedding pattern is
developed based upon direct-address table, shell based pixel
selection and using bit plane slicing to get alpha, red, green, blue
part`s LSB (Least Significant Byte). In embedding a randomly
generate shell number (s) is stored in diagonal pixels starting
from pixel at (2,2) and then an element is read along row at (x, y
+ j) position then along column at (x + i, y) position.
Alternatively, the pixels are selected from row and column and
the counters i, j are incremented by shell value (s). Then as
counters exceed their limiting values i.e. height and width then
the shell size is reduced and counters are reset. To prevent
duplicate selection of pixels two linear arrays are maintained.
After all the pixels along row and column are selected then next
pixel (3, 3) is selected and same procedure is repeated until the
image is embedded. This is done to increase the security and
sensitivity of watermark. After embedding, a key for extraction
is generated. The key consists of information about key (K1) for
generating modified logical matrix, watermark image
dimensions and information of number of digits in image
dimension. Extraction process requires watermarked image (MI)
and extraction key (K1). Using key, all necessary information is
extracted and watermarked image is read in same manner as
done in embedding process, it will generate logical matrix.
Modifier takes key and logical matrix to generate watermark
matrix which again is used to get binary watermark image. The
logical matrix generation, embedding and extraction processes
of watermarking are shown in Fig. 1, Fig. 2 and Fig. 3
respectively. The step by step process of each stage is discussed
in the following sections:

A. Modified logical matrix generation

1. Generate 8-bit random key ‘K1’.

2. Use local thresholding to convert color image to binary image
‘BW’.

3. Generate logical matrix ‘LM1’ for corresponding value of
binary image, i.e. 0 for 0 and 1 for 255.

4. Sequentially read bits from logical matrix ‘LM2’ and
perform XOR with key ‘K1’ and store it in modified logical
matrix ‘LM2’.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

2697

Fig. 1. Proposed Modified Logical matrix generation

B. Watermark embedding

1. Open cover image ‘C’. Its dimensions are W×H.

2. Create a blank image ‘MI’ of same size of cover image.

3. Start reading cover image from pixel at (x,y)=(2,2).

3.1. Generate a random shell number ‘s’ between 1-5 and
store in LSB of RGB components of that pixel and
write that pixel to image ‘MI’.

3.2. Maintain two one-dimensional array one of size W-x
for row and another of size H-y for column and
initialize them with 0.

3.2.1. Initialize i=1, j=1.

3.2.2. Read one pixel along row and then another pixel
along column alternatively.

3.2.3. While reading along row, read pixel at (x, y + j)
check for corresponding index value, if it is 0 and
if y + j < width W, if both are true then extract
alpha, red, green, blue part`s LSB and modify
them according to value read from modified
logical matrix LM2.

3.2.4. Write the modified pixel to image ‘WI’.

3.2.5. Increment the counter j by s. j=j + s.

3.2.6. While reading along column, read pixel at (x + i,
y) check for corresponding index value, if it is 0
and if x + i < height H, if both are true then then
extract alpha, red, green, blue part`s LSB and
modify them according to value read from
modified logical matrix LM2.

3.2.7. Write the modified pixel to image ‘WI’.

3.2.8. Increment the counter i by s. i=i + s.

3.2.9. Repeat steps from 3.2.1 to 3.2.8 if statement 3.2.3
and 3.2.6 fails simultaneously then decrease shell
number ‘s’ by 1 and repeat steps from 3.2.1.

3.2.10. If s becomes 0, increment x by 1 and y by 1,
i.e. x=x+1, y=y+1.

3.3. Repeat steps from 3.1 till all bits from modified logical
matrix LM2 is read.

4. Read first two columns of cover image and write them to
image ‘WI’.

5. Read rest of the cover image where step 3 stops at some (x, y)
pixel and write them to image ‘WI’.

C. Extraction key generation
1. Take 8-bit random key (K1) concatenate with width and

height of binary watermark concatenate with information of
number of digits in watermark width and height.

2. Example: key=12760867033. K1 = 127, width = 608, height
= 670, number of digits in width = 3, number of digits in
height = 3.

Fig. 2. Proposed Watermark embedding

D. Watermark Extraction

1. Read key entered by user.
2. Separate key K1, width ‘fw’, height ‘fh’ from key.
3. Open watermarked image MI. Its dimensions are W×H.
4. Create an empty matrix ‘ELM1’ of same size of MI, and

initialize counter variables as row=0, col=0.
5. Start reading watermarked image from pixel at (x,y)=(2,2).

5.1. Read LSB of RGB components of that pixel and
generate 3-bit binary number and convert that number
to integer and store it in ‘s’, the shell number.

5.2. Maintain two one-dimensional array one of size W-x
for row and another of size H-y for column and
initialize them with 0.

5.2.1. Initialize i=1, j=1.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

2698

5.2.2. Read one pixel along row and then another pixel
along column alternatively.

5.2.3. While reading along row, read pixel at (x, y + j)
check for corresponding index value, if it is 0 and
if y + j < width W, if both are true then extract
alpha, red, green, blue part`s LSB and write the
bits read to logical matrix ELM1 using row and
col counter.

5.2.4. Change row and col counter accordingly and
keeping their value under fw, watermark width
and fh, watermark height.

5.2.5. Increment the counter j by s. j=j + s.
5.2.6. While reading along column, read pixel at (x + i,

y) check for corresponding index value, if it is 0
and if x + i < height H, if both are true then then
extract alpha, red, green, blue part`s LSB and
write the bits read to logical matrix ELM1 using
row and col counter.

5.2.7. Change row and col counter accordingly and
keeping their value under fw, watermark width
and fh, watermark height.

5.2.8. Increment the counter i by s. i=i + s.
5.2.9. Repeat steps from 5.2.1 to 5.2.8 if statement

5.2.3 and 5.2.6 fails simultaneously then decrease
shell number ‘s’ by 1 and repeat steps from 5.2.1.

5.2.10. If s becomes 0, increment x by 1 and y by 1,
i.e. x=x+1, y=y+1.

5.3. Repeat steps from 5.1 and stop if both row==fh,
col==fw becomes true.

6. Sequentially read bits from logical matrix ‘ELM1’ and
perform XOR with key ‘K1’ and store it in watermark
logical matrix ‘ELM2’.

7. Create a blank binary image ’EBW’ of size fw and fh. Store
intensity values from corresponding value of watermark
logical matrix ‘ELM2’, i.e. 0 for 0 and 255 for 1 to image
EBW.

Fig. 3. Proposed Watermark extraction

III. EXPERIMENTAL RESULTS

The performance of the proposed method is measured in terms
of imperceptibility and robustness against various attacks
namely, gaussian blur, cropping, forgery, color inversion,
uniform and gaussian monochromatic noise, sharpening, jpeg
compression and mosiac pixelate. The 20 sample images of
same dimensions (see Fig. 4) and the watermark image as logo
of VIT University (see Fig. 5) has been taken in order to
evaluate the performance.

Fig. 4 Host Images (angrybird, parrot, baby, deer, flower1, rhinos, sunflower,
mixedfruit, myna, foreman, flower2, apple, tennis, baboon, tiffany, lighthouse,
lena, peppers, and goldhill)

Fig. 5 Watermark Image (vitlogo)

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

2699

After embedding, the watermarks are extracted from the
watermarked images, and the extracted watermarks are
compared with the original watermarks to make conclusion that
whether the watermarked image is altered. The proposed system
is tested by introducing various attacks. These attacks or image
manipulations are performed using Adobe Photoshop.

A. Metrics

The metrics that are used to measure the mentioned
imperceptibility (PSNR) and robustness (NCC, BER) include:
A.1 Imperceptibility measure:

Peak signal-to-noise ratio (PSNR), is used as a common metric to
evaluate the degradation caused by various attacks. It
approximates human perception of reconstruction quality. In a
noise-free m × n monochrome image I and its noisy
approximation K, MSE is defined as,

 (3)

The PSNR (in dB) is defined as,

 (4)

Here, MAXI is the maximum possible pixel value of the image.
When the pixels are represented using 8 bits per sample, this is
255.

Greater than 38dB is treated as acceptable, where higher than this
will be better. When noise is absent, the two images I and K are
identical, and thus the MSE is zero. In this case, the PSNR
becomes infinite [17].

A.2 Robustness measure:

A.2.1 Normalized Correlation Coefficient (NCC) is the
correlation co-efficient can be computed using the following
equation as,

()
() ()−−

−−
=

22

))((

mimi

mimi

EWEWOWOW

EWEWOWOW
NCC

 (5)

The value of NCC varies between 0 and 1. If there is no error in
the received message then the value of NCC will be close to 1,
otherwise, close to 0. It acceptable limit is greater than 50% [17].

A.2.2 Bit error rate (BER) is the ratio of wrongly extracted
watermark bits to the total number of watermark bits embedded.
If there is no error in the received message then the bit error rate
value will be 0, otherwise close to 1. [17]

 (6)

where, OWi is the intensity of the ith pixel in image (original
watermark), EWi is the intensity of the ith pixel in image 2
(extracted watermark) and m is the total number of embedded
watermark bits.

B. Attacks
The various image processing attacks used to validate the
imperceptibility and robustness of the proposed watermarking
systems are given below:

B.1 Gaussian blur
A Gaussian blur is achieved by using Gaussian function for

blurring an image. The visual effect of this blurring technique is a
smooth blur resembling that of viewing the image through a
translucent screen [18]. It is used widely in graphics software,
typically to reduce detail and reduce image noise. A Gaussian
blur of radius 10 is applied on watermarked image Fig. 6 shows
blurred watermarked image and its corresponding extracted
watermark. Extracted watermark was completely destroyed
showing that image is manipulated.

(a) (b)

Fig. 6. (a)Watermarked image after Gaussian Blur, (b) extracted watermark

B.2 Cropping
Cropping refers to the process of removing certain parts of a

picture using an image editing software. 22.15% area of
watermarked image is cropped. Fig. 7 shows cropped
watermarked image and its corresponding damaged watermark
showing that image is manipulated.

 (a) (b)
Fig. 7. (a) Watermarked image after cropping, (b) extracted watermark

B.3 Forgery
Forgery refers to altering image by copying some part of

image and pasting elsewhere on image itself. This gives a false
impression that particular object is present at multiple positions
in the image [19]. The red colored bird was added at the right
side of image. Fig. 8 shows forged watermarked image and its
extracted watermark. Watermark can be identifying from the
extracted image but it is quite significantly visible that it is
different from the original.

 (a) (b)

Fig. 8. (a) Watermarked image after forgery, (b) extracted watermark

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

2700

B.4 Color inversion
 Inverting a color means finding the difference between the
current value and 255 for each red, green, blue component of
pixel. It gives old photographic negative effect to image. Fig. 9
shows color inverted watermarked image and its watermark. As
it is changing each pixel value drastically, the changes in
extracted watermark is quite significant, resulting in lowest
PSNR value.

 (a) (b)

Fig. 9. (a) Watermarked image after color inversion, (b) extracted watermark

B.5 Uniform and Gaussian monochromatic noise
Noise is added randomly to an image. The pixels that are

created have random level of color intensities. The uniform
option creates a subtle distribution appearance shown in Fig. 10

 (a) (b)

Fig. 10. (a) Watermarked image after insertion of uniform monochromatic noise,
(b) extracted watermark

 (a) (b)

Fig. 11. (a) Watermarked image after insertion of Gaussian monochromatic
noise, (b) extracted watermark
and Fig.11 shows a speckled distribution look.
Monochromatic applies the filter using the tones of the image
without changing the colors [20]. 20% noise is added in both
methods and a similar noisy watermark is extracted showing
some presence of image alteration.

B.6 Sharpening
 Image sharpening is an enhancement technique that
highlights edges and fine details in an image. Image sharpening
is achieved by high pass filter, which enhances high frequency
components [21]. Fig. 12 shows sharpened image with a radius
of 10 and its coressponding extracted watermark image showing
presence of some image manipulation.

 (a) (b)

Fig. 12. (a) Watermarked image after sharpening, (b) extracted watermark

B.7 JPEG Compression
 In image compression, the image is stored in lesser bit as

compared with its original size. The main aim of image
compression is to decrease redundancy of image and eliminate
that portion which is not visible to human eyes so that overall
size is reduced. The jpeg technique is a lossy DCT (Discrete
cosine transformation) based technique. In this process, image is
separated into various different frequencies and while
quantization unnecessary frequencies are discarded and the
remaining necessary frequencies are used to retrieve the image
in the reconstruction process [22]. The watermaked image is
converted to jpeg image as shown in Fig. 13, which causes
complete destruction of watermark showing only salt and pepper
noise.

 (a) (b)

Fig. 13. (a) Watermarked image after JPEG compression, (b) extracted
watermark

B.8 Mosiac pixelate
In Mosaic Pixelate, a filter is used which sharply define a

selection by clumping pixels of similar color values in cells. It
clumps pixels into square blocks. The pixels in a given block are
the same color, and the colors of the block represent the colors

 (a) (b)
Fig. 14. (a) Watermarked image after mosaic inversion, (b) extracted watermark

in the selection. A mosaic pixelate of radius 10 is applied as
shown in Fig. 14 and its extracted watermark showing that
sensitivity characteristics of the method provide good security
from minor image manipulations.

TABLE III. BER and PSNR values for various image processing attacks on
watermarked images. BER and PSNR are calculated for extracted watermark.

S. No. Attacks NCC BER PSNR

1. Gaussian Blur radius10 0.665 4.4027 51.693

2. Crop 22.15% less pixel 0.783 3.9622 52.1513

3. Forgery 0.925 1.7139 55.7908

4. Color Inversion 0.987 0.075 49.3801

5. Uniform monochromatic noise 20% 0.769 3.7675 52.3701

6. Gaussian monochromatic noise 20% 0.778 3.7660 52.3719

7. Sharp radius 10 0.725 3.8511 55.2274

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

2701

8. JPEG Compression 0.501 5.3126 51.7833

9. Mosaic Pixelate radius 10 0.482 6.3894 51.7341

The Table. III shows the comparison of average PSNR and BER
values for various attacks with the sample benchmarked images.
Our approach is able to extract 66%, 78%, 92%, 98%, 76%,
77%, 72%, 50% and 48% on an average for various test images.
From the above results, we conclude that the proposed
watermarking algorithm is able to withstand various attacks
except JPEG compression and mosaic pixelate. In particular,
when a watermarked image is attacked by forgery and color
inversion, the 92% and 98% of watermark extraction is
achieved.

IV. CONCLUSION
In this paper, we have implemented a model of watermarking

technique and tested it with various image manipulations. It has
the ability to embed an invisible watermark into a spatial domain
of an image. This technique yields watermarked images with
high capacity, imperceptibility and high robustness. The
algorithm provides high level of security by generating key
which is used to extract the watermark later; also, the algorithm
is able to randomize the location of the watermark by shell based
pixel selection. On the other hand, an extraction algorithm is
prepared and tested successfully.

REFERENCES
[1] Sorina Dumitrescu, Xiaolin Wu, and Zhe Wang, “Detection of LSB

Steganography via Sample Pair Analysis”, IEEE Transactions on Signal
Processing, Vol. 51, No. 7, pp.1995-2007, July 2003.

[2] Y. K. Lee and L. H. Chen, "High capacity image steganographic model,"
Vision, Image and Signal Processing, IEEE Proceedings, Vol. 147, pp.
288-294, June 2000.

[3] J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure spread spectrum
watermarking for multimedia,” IEEE Trans. Image Processing, Vol. 6, pp.
1673–1687, December 1997.

[4] Cox, IJ, Miller, ML and Bloom, Digital Watermarking, 2nd ed., San
Francisco, CA, USA: Morgan Kaufmann Publisher, 2002.

[5] Ingemar, J. Cox, Matthew, L. M., Jeffrey, A. Bloom, Jassica Fridrich and
Tan Kalker, Digital Watermarking and Steganography, 2nd ed., San
Francisco, CA, USA: Morgan Kaufmann Publisher, 2008.

[6] H. C. Huang and W. C. Fang, "Authenticity Preservation with Histogram-
Based Reversible Data Hiding and Quadtree Concepts," Sensors, Vol. 11,
No. 10, pp. 9717-9731, October 2011.

[7] Monika Patel, Priti Srinivas Sajja and Ravi K. Sheth, “Analysis and Survey
of Digital Watermarking Techniques”, Int. J. of Advanced Research in
Computer Science and Software Engineering (IJARCSSE), Vol. 3, No.10,
pp. 203-210, October 2013.

[8] Raja’ S. Alomari and Ahmed Al-Jaber “A Fragile Watermarking
Algorithm for Content Authentication”, Int. J. of Computing & Information
Sciences(IJCIS), Vol. 2, No. 1, pp. 27-37, April 2004.

[9] H. C. Huang and W. C. Fang, "Authenticity Preservation with Histogram-
Based Reversible Data Hiding and Quadtree Concepts," Sensors, vol. 11,
no. 10, pp. 9717-9731, October 2011.

[10] N. M. Ngo, M. Unoki, R. Miyauchi, and Y. Suzuki, "Data Hiding Scheme
for Amplitude Modulation Radio Broadcasting Systems," Journal of
Information Hiding and Multimedia Signal Processing, Vol. 5, No. 3, pp.
324-341, July 2014.

[11] Agilandeeswari L.and Ganesan K., “A bi-directional associative memory
based multiple image watermarking on cover video”, Multimedia Tools
and Applications, Vol. 75, No.12, pp. 7211 – 7256, June 2016.

[12] Mustafa Osman Ali, Elamir Abu Abaida Ali Osman, Rameshwar Row,
“Invisible Digital Image Watermarking in Spatial Domain with Random
Localization”,Int. J. of Engineering and Innovative Technology
(IJEIT),Vol. 2, No. 5, pp. 227-231, November 2012.

[13] Irene G. Karybali, and Kostas Berberidis, “Ef cient Spatial Image
Watermarking via New Perceptual Masking and Blind Detection
Schemes”, IEEE Trans. Information Forensics and security,Vol.1, No.2,
pp. 256-274, June 2006.

[14] Agilandeeswari L. and Ganesan K., “An efficient hilbert and integer
wavelet transform based video watermarking”, Journal of Engineering
Science and Technology, Vol. 11, No. 3, pp. 327-345, March 2016.

[15] Agilandeeswari L.and Ganesan K.(2016), “An adaptive HVS based Video
watermarking scheme for multiple watermarks using BAM neural
networks and fuzzy inference system”, Expert Systems with Applications,
Vol. 63, pp.412 – 434, November 2016.

[16] R. Munir, "A chaos-based fragile watermarking method in spatial domain
for image authentication", 2015 Int. Seminar on Intelligent Technology and
its Applications (ISITIA), pp. 227-232, 2015.

[17] Agilandeeswari L.and Ganesan K, “A robust color video watermarking
scheme based on hybrid embedding techniques”, Multimedia Tools and
Applications, Springer [online]. (28, August 2015).
Available:http://link.springer.com/article/10.1007%2Fs11042-015-2789-9.

[18] Frederick M. Waltz and John W. V. Miller, “Efficient algorithm for
Gaussian blur using finite-state machines”, Proc. SPIE 3521, Machine
Vision Systems for Inspection and Metrology VII, SK21-7, November
1998.

[19] Hailing Huang, Weiqiang Guo and Yu Zhang, “Detection of Copy-Move
Forgery in Digital Images Using SIFT Algorithm”, Pacific-Asia Workshop
on Computational Intelligence and Industrial Application, 2008. PACIIA
'08, Vol.2, pp. 272 – 276, 2008

[20] Brad Eigen, Micah Brown and Dan Livingston, Essential Photoshop 6 for
Web Professionals,New Jersey: Prentice Hall PTR, 2001, pp.261

[21] Eunsung Lee, Sangjin Kim, Wonseok Kang, Doochun Seo, and Joonki
Paik, “Contrast Enhancement Using Dominant Brightness Level Analysis
and Adaptive Intensity Transformation for Remote Sensing Images, IEEE
Geoscience And Remote Sensing Letters, pp. 1545 – 598, 2012.

[22] Priya Dixit and Mayank Dixit, “Study of JPEG Compression Techniques
Using DCT”, Int. J. of Interdisciplinary Research and Innovations (IJIRI),
Vol.1, No.1, pp. 32-35, Oct – Dec 2015.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

2702

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

